Главная » Приложение » Скважность импульсов шим. ШИМ-контроллер: схема, принцип работы, управление. Светодиоды и устройства освещения

Скважность импульсов шим. ШИМ-контроллер: схема, принцип работы, управление. Светодиоды и устройства освещения

— это электронное устройство собранное на мощных полевых транзисторах MOSFET, которые являются одним из самых важных коммутирующих элементов в современной бытовой и профессиональной электронной технике. Используется такие переключатели в основном в тех устройствах,где присутствуют большие нагрузки по постоянному току и способны заменить собой сильно-точный коммутационный аппарат с возможностью гашения электрической дуги,так как у таких устройств из за больших токов часто выгорают контактные площадки и они приходят в негодность. Электронный переключатель с использованием MOSFET-транзисторов таким явлениям не подвержен и отлично справляется с работой коммутации нагрузок при больших токах и напряжениях в различных силовых цепях.

Представленная здесь схема имеет возможность с легкостью управлять переключением больших нагрузок по постоянному току, используя при этом низкие значения импульсного напряжения — всего 5 В. Установленные в схеме MOSFET -транзисторы NTP6411 рассчитаны на работу с напряжением в 100V и током 75А,мощность этих электронных компонентов составляет около 200W.Такие параметры силовых транзисторов позволяет эффективно применять этот электронный переключатель в узлах автомобиля вместо штатного реле. Для активации транзисторов устройства используется как обычный выключатель так и импульсный вход,выбор метода ввода осуществляется установкой перемычки из отрезка изолированного провода на соответствующие выводы коннектора.

На практике наиболее эффективен и полезен вход с импульсным напряжением,так как он имеет низкие значения управляющего напряжения. Проектировалась схема для работы с постоянным напряжением 24V, но вполне успешно может быть использована и при других напряжения,при тестировании на 12 вольтах показала себя в работе с лучшей стороны,к тому же установленные MOSFET-NTP6411 могут быть заменены на другие N-канальные полевые транзисторы соответствующих электрических характеристик. Установленный в схеме диод D1 выполняет защитные функции,тем самым предотвращает броски напряжения исходящих от индуктивных нагрузок. Встроенные в плату светодиоды дают возможность визуального наблюдения за состоянием полевых транзисторов,а винтовые терминалы обеспечивают подключение электронного переключателя в разные модули. По завершению сборки MOSFET переключателя он прошел суточный тест обеспечивая работой электромагнитный клапан с напряжением питания 24 вольта и током пол-ампера,при этом полевые транзисторы находились в совершенно холодном состоянии,даже в отсутствии тепло-отводов.В общем схема зарекомендовала себя надежным устройством,способная работать в самых разных областях применения,в том числе и автомобильной электронике вместо реле или работать как управляющие устройство в светодиодном освещении.

Напряжение питающей сети не всегда соответствует требованиям потребителей. Если происходит его скачок с 220 В до 250 В, это может вывести из строя чувствительные электроприборы. В качестве защиты здесь можно применять переключатель фаз.

Разнообразие типов переключателей фаз

Принцип действия

Переключатель обеспечивает выбор фазы, напряжение на которой соответствует установленным параметрам. Сам он подключается к трехфазной сети, а на выходе одна из фаз подключается к нагрузкам. Если напряжение на ней выходит за заданный диапазон, переключатель переводит потребителей на работу от другой фазы.

Ручные переключатели фаз

Цели применения устройств следующие:

  • переключение питающей сети;
  • запуск и остановка электродвигателей, включение трансформаторов и других приборов.

Главная цель механического переключателя – создание бесперебойного питания однофазной нагрузки и защита потребителей от скачков напряжений в сети.

На рисунке ниже изображена схема перекидного переключателя на 3 положения. К контактам (2), (4), (6) подключены 3 фазы, а к неподвижному контакту – нагрузка.

Схематичный вид 3х положений перекидного переключателя

Ручные кулачковые переключатели служат для коммутации цепей под напряжением до 380 В. Их используют при включении и выключении электроприборов, а также для создания главных и управляющих цепей. Устройства имеют небольшие габариты, выдерживают кратковременные перегрузки и обладают высокой коммутационной способностью. Когда производится выбор прибора, важно обращать внимание на номинальный ток.

Во многих конструкциях ручных переключателей предусмотрено нулевое положение, в котором электрические цепи остаются разомкнутыми. Это позволяет использовать их в качестве выключателей.

Электронные переключатели фаз

Для защиты однофазных потребителей от скачков напряжения в сети лучше подходит электронный прибор. Он автоматически переходит на другую линию, когда действующая линия не может нормально работать. Оборудование служит для питания бытовой и промышленной нагрузки.

Автоматический прибор большинства типов имеет следующие параметры установки:

  1. Минимальный и максимальный пределы напряжения. Особенно важен верхний предел, который следует правильно выставлять. Если его сделать слишком низким, начнутся частые срабатывания. При высоких значениях начнет перегреваться внутренняя проводка. Выбирается приоритетная фаза (L1) устройства переключения. Если на ней нет скачков напряжения, переход на линии (L2) или (L3) может не произойти. Если такое переключение будет иметь место, прибор продолжит слежение за приоритетной линией и при восстановлении необходимого уровня напряжения произойдет обратное переключение нагрузки. Если нижний и верхний пределы напряжения пересекаются в диапазоне отклонений на 10-20 В, прибор будет нестабильно работать. Поэтому важно сделать правильный выбор установок.
  2. Время возврата – интервал, в течение которого переключатель должен автоматически проверять состояние прежнего источника питания, чтобы вернуться в исходное состояние. Если оно в норме, происходит обратный переход. В противном случае следующая проверка произойдет через тот же промежуток времени. Выбор времени возврата делает пользователь, исходя из опыта, потребностей и особенностей работы электросети.
  3. Время включения – пауза, после которой прибор делает попытку включить питание нагрузки после того, как напряжение пропало на всех фазах.

Производители

Переключатели «АПАТОР» серии 4G

Российская компания “АПАТОР” производит изделия массового применения и выполненные по специальному заказу. Широкий ассортимент продукции позволяет подобрать подходящую замену изделиям других производителей.

Схемы коммутации предусматривают следующие варианты:

  • наличие или отсутствие нулевого положения переключателя;
  • ускоренная коммутация;
  • многопозиционные переключения при количестве полюсов от 1 до 8;
  • групповые переключения.

Положение кулачкового переключателя, как изображено на рисунке ниже, обеспечивает замыкание электрической цепи верхними подвижными контактами (3) и неподвижными (1). Проводники зажимаются винтами (12).

Схема строения переключателя компании “АПАТОР” на основе кулачкового механизма

При повороте кулачка (2) на 90 0 против часовой стрелки верхний шток (5) поднимается вверх под действием пружин и размыкает цепь. Нижний шток поднимается вверх вместе с подвижными контактами, замыкая нижнюю электрическую цепь.

Кулачковый механизм имеет следующие достоинства:

  • надежную коммутацию;
  • устойчивость к перегрузкам;
  • малое сопротивление замкнутых контактов;
  • высокую скорость замыкания и размыкания контактов;
  • небольшие усилия переключения;
  • возможность создания многочисленных схем переключений одним и тем же механизмом;
  • длительный срок эксплуатации.

Устройство переключателей позволяет легко производить коммутацию электрических цепей без лишнего давления на ручку. Ее искусственное торможение также делать нецелесообразно.

Фирма «АПАТОР» изготавливает специальные переключатели, рассчитанные на номинальный ток 100 А. Высокая нагрузка обеспечивается за счет дублирования контактов. Устройства можно применять в качестве основных выключателей.

Переключатели «SOCOMEC SCP»

Производитель «SOCOMEC SCP» (основан во Франции) выпускает несколько типов аппаратов. Наиболее популярными являются многополюсные переключатели COMO C (преимущественно трех,- и четырехполюсные). Устройствами можно безопасно переключать и выключать нагрузки от 25 А до 100 А (рис. а). Разрыв контакта – видимый.

Различные типы переключателей фаз от компании «SOCOMEC SCP»

Sirco VM commut – многополюсный ручной переключатель (рис. б) обеспечивает питание нагрузки от двух источников. Номинальный ток составляет 65-125 А. При отключении остается видимый разрыв.

SIRCOVER M (рис. в) является перекидным рубильником с ручным управлением и несколькими полюсами. Устройство обеспечивает отключение или включение источников питания на нагрузку.

Переключатель фаз SPH-41

Устройство обеспечивает подключение однофазного потребителя к трехфазной четырехпроводной сети (производитель ООО “Вектор”, Россия). Автоматический прибор устанавливается после счетчика, выбирает самую надежную по параметрам фазу и подключает к ней потребителя. Затем производится контроль за напряжением. Выбор и установка его верхнего и нижнего допустимых пределов делается заранее.

Переключение фаз в автоматическом режиме

Переключатель ПЭФ-301 изображен на рисунке ниже (производитель ООО НПК “Электроэнергетика”). Прибор предназначен для питания однофазной бытовой и промышленной нагрузки от трехфазной сети. Устройство автоматически выбирает фазу с лучшими параметрами и подключает к ней нагрузку. Потребители до 3,5 кВт связаны с сетью через прибор (рис. а). Приоритетной является фаза L1. При выходе значения напряжения за порог срабатывания, ПЭФ-301 переключает потребителя на другую фазу с помощью контактов (7-8), (9-10), (11-12) на выходе прибора.

При большей мощности нагрузки выходные контакты прибора связаны с катушками магнитных пускателей, которые управляют силовыми контактами подачи напряжения через фазу с лучшими характеристиками (красный, зеленый и черный на рис. б).

Схемы подключения автоматического переключателя фаз

3х фазный переключатель. Видео

Обзор трехфазного переключателя для дома доступен в видео ниже.

Переключатель фаз в доме или квартире можно ставить ручной или автоматический. Электронный переключатель фаз обеспечивает максимальный комфорт, поскольку выполняет всю работу без вмешательства и не требует постоянного контроля. Следует только произвести правильную настройку его работы, и он надежно защитит бытовые электроприборы.

С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.

▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.

Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.

▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.

Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.

▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…

Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим:) Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.

▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.

▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.

Правда тут надо учитывать то, что если нога может отдать 10мА,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.

Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.

▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.

Одна кнопка и включает и выключает питание.

Как работает:

При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.

Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.

Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.

Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.

Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.

Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.

Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.

Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.

Вот такая простая, но прикольная схема. Вот На сходном принципе действия.

Схема электронного выключателя была задумана для дистанционного управления нагрузками на расстоянии. Полное устройство аппарата рассмотрим в другой раз, а в этой статье обсудим простую схему электронного выключателя на основе всеми любимого таймера 555.

Схема состоит из самого таймера, кнопки без фиксации транзистора в качестве усилителя и электромагнитного реле. В моем случае было использовано реле на 220 Вольт с током 10Ампер, такие можно найти в источниках бесперебойного питания.


В качестве силового транзистора можно использовать буквально любые транзисторы средней и большой мощности. В схеме использован биполярный транзистор обратной проводимости (NPN), я же использовал прямой транзистор (PNP), поэтому нужно будет менять полярность подключения транзистора , то есть — если собираетесь применить транзистор прямой проводимости, то плюс питания подается на эмиттер транзистора, при использовании транзисторов обратной проводимости на эмиттер подается минус питания.


Из прямых, можно применить транзисторы серии КТ818, КТ837, КТ816, КТ814 или аналогичные, из обратных — КТ819, КТ805, КТ817, КТ815 и так далее.

Электронный выключатель работает в широком диапазоне питающих напряжений, лично подавал от 6 до 16 Вольт, все работает четко.

Схема активируется при кратковременном нажатии кнопки, в этот момент транзистор моментально открывается включая реле, последнее замыкаясь подключает нагрузку. Выключение нагрузки случается только при повторном нажатии. Таким образом, схема играет роль выключателя с фиксацией, но в отличие от последнего, работает исключительно на электронной основе.


В моем случае вместо кнопки использована оптопара, а замыкается схема при команде с пульта управления. Дело в том, что сигнал на оптопару поступает от радиомодуля, который был взят от китайской машинки на радиоуправлении. Такая система позволяет управлять несколькими нагрузками на расстоянии без особого труда.

Данная схема электронного выключателя всегда показывает хорошие рабочие параметры и работает безотказно — пробуйте и сами убедитесь.


Схема простого самодельного селектора входов для подключения нескольких источников сигнала к телевизору. Сейчас в стране вовсю развивается цифровое телевидение. Как известно, для его приема нужен либо специальный телевизор с цифровым радиоканалом, либо нужно купить цифровую приставку и подключить её по НЧ входам к любому телевизору. Но, у многих недорогих телевизоров есть только один НЧ-вход.

Либо два. Чаще бывает, что НЧ-входов как бы два («скарт» и «азия»), но на деле они просто дублируют друг друга. В общем, НЧ-входов стало катастрофически не хватать. В принципе, в магазинах на такой случай должны быть какие-то «сплиттеры» или переключатели, но их нет.

Во всяком случае, простых и дешевых устройств я в наших магазинах не встречал. Есть очень дорогие коммутаторы для систем видеонаблюдения и дешевые разветвители, которыми выходы источников сигнала фактически подключаются параллельно друг другу, через резисторы по 75 От. Если аудиосигналы еще как-то это терпят, но, видео, увы, выключенный источник мешает работающему, снижая уровень видеосигнала. Нарушается синхронизация.

Самый простой способ выхода из положения, - это сделать простейший переключатель, например, по схеме, что показана на рисунке 1. Нужно девять гнезд «азия», соответственно, три белых, три красных и три желтых (чтобы по цветам соответствовать назначению, как это принято в аппаратуре), еще один переключатель типа П2К на четыре направления (одно останется пустым), ну корпус, в качестве которого вполне сойдет любая мыльница. Сделать можно за час. Кабель от входов телевизора подключаете к разъемам Х7, Х8, Х9.

Еще два кабеля - к DVD-плееру и цифровой приставке, соответственно, разъемы Х1, Х2, Х3 и Х4, Х5, Х6. При отжатой кнопке S1 включен DVD-плеер, при нажатой -цифровая приставка.

Принципиальная схема переключателя

Переключатель по схеме на рис.1 удобен если переключать нужно не очень часто, -все лучше, чем перетыкать штекера, да прост он. Другое дело, если переключать нужно часто.

Рис.1. Принципиальная схема переключателя входов аудио-видео.

Здесь может быть два варианта - организовать дистанционное управление переключателем входов с помощью пульта ДУ телевизора, но это потребует сделать декодер на микроконтроллере и выбрать кнопки пульта для управления переключателем, которые не используются для управления телевизором, что тоже не всегда возможно.

Управление наличием видео-сигнала на входе

Второй вариант, более простой и практичный, заключающийся в том, чтобы управлять переключателем по наличию видеосигнала на одном из переключаемых источников сигнала. Например, при отсутствии видеосигнала на выходе DVD-плеера (и при отключенном питании переключателя) к телевизору подключена цифровая приставка.

А при наличии видеосигнала на выходе DVD-плеера (DVD-плеер включен) и наличии питания переключателя к телевизору подключен DVD-плеер. Работающий таким образом переключатель можно сделать по схеме на рис. 2.

В отличие от схемы на рисунке 1, у него входы переключаются при помощи электромагнитного реле типа TRY-12VDC-P-4C. Очень похоже на реле РЭС-22, только корпус пластмассовый, впрочем, и РЭС-22 с обмоткой на 12V тоже подойдет не хуже.

Управляет реле сенсор наличия видеосигнала, на транзисторах VT1-VТЗ. Он следит за видеовходом для DVD-плеера, и как только там появляется видеосигнал, переключает входы телевизора с цифровой приставки на DVD-плеер.

Рис. 2. Схема переключателя входов AV с автоматическим определением наличия видео-сигнала.

При отсутствии видеосигнала на выходе DVD-плеера (разъем X3) или отключенном питании контакты реле К1 находятся в положении, показанном на схеме. При этом на вход телевизора поступает сигнал с выхода цифровой телеприставки.

Если включено питание переключателя и включен DVD-плеер на разъем X3 от него поступает видеосигнал. Он через цепь R1-С1 поступает на усилительный каскад на транзисторе VТ1, который усиливает его по амплитуде. После чего усиленный сигнал поступает на детектор на двух диодах VD1, VD2 и конденсаторе C3.

Напряжение на C3 увеличивается, что приводит к открыванию транзистора VТ2, а вслед за ним открывается и VT3, через который поступает ток на обмотку реле К1. Реле переключает свои контакты в противоположное положение, показанному на схеме, и входы телевизора переключаются на выходы DVD-плеера.

Пока DVD-плеер включен, его выходы будут подключены к телевизору. При выключении DVD-плеера видеосигнал на его выходе пропадает, и переключатель обратно переключается на цифровую приставку. Вместо реле TRY-12VDC-P-4C можно использовать РЭС-22 с обмоткой на 12V или любое другое реле с обмоткой на 12V и не менее трех переключающих контактных групп.

Снегирев И. РК-02-2016.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта