Главная » Помощь » Плоская спиральная антенна своими руками. Цилиндрическая спиральная антенна. Самая проста антенна для дачи — из металлических банок

Плоская спиральная антенна своими руками. Цилиндрическая спиральная антенна. Самая проста антенна для дачи — из металлических банок

Этот тип антенн хорошо подходит для дальнего приёма эфирного телевизионного цифрового сигнала. Подкупает простота изделия, всего две основные детали: отражатель из снегоуборочной лопаты и спираль из мотка силового провода. Ни одного паяного соединения, всё на винтах и скрутке. Нет сложных согласующих элементов. Тем не менее, коэффициент усиления конструкции достигает более 10 дБ, что позволяет использовать её в некоторых случаях без усилителя. Именно на эту антенну без усилителя я принял за городом цифровой телевизионный сигнал.


Хочу напомнить, что любая дециметровая антенна годится для цифрового канала вещания, разница будет только в дальности приёма. Но не всякая антенна обеспечит максимальный коэффициент усиления и согласования именно на нужной частоте. Какая бы сложная антенна не была, она имеет провалы и пики усиления во всём своём диапазоне принимаемых частот.

Именно спиральные антенны следили за полётом первого космонавта Юрия Гагарина.Когда первые советские луноходы, ориентируя спирали, бороздили поверхность Луны, я мечтал сделать такую же космическую антенну.


Фото 2.

Нет ничего хуже незавершенных дел. За основу выбираю самую простую из всех типов спиральных антенн. Это однозаходная, спиральная, цилиндрическая (бывает ещё коническая), регулярная, то есть с постоянным шагом намотки или одинаковым расстоянием между витками. Таким образом, уже название антенны говорит о её конструкции. Именно такую конструкцию впервые предложилKraus J .D .

«Helical beam antenna ». – «Electronics », 1947 год. V 20, N 4. Р. 109.

Рекомендую для радиолюбителей лучшую настольную книгу «Антенны», издание 11, том 2. Автор Карл Ротхаммель. В книге собрано много практического материала почти всем видам антенн. Характеристики, параметры, практические расчёты, рекомендации.

Из этого издания я привожу характеристики спиральной антенны.


Рис. 1.

Необходимо узнать на какой частоте в вашем регионе идёт цифровое вещание и значение этой частоты перевести в метры. Длина волны в метрах = 300 / F (частота в МГц).

Для московских частот вещания двух цифровых пакетов, я выбрал среднюю частоту 522 МГц, что соответствует длине волны лямбда 57 см. В этом случае диаметр витка равен D = 17,7 см, расстояние между витками 13,7 см, расстояние от экрана до витка 7,4 см, а ширина экрана должна уложиться в 35 см.

В качестве экрана (отражателя) мне потребовалась неправильная снегоуборочная лопата из красивой блестящей нержавейки, постоянно гнущейся под тяжестью снега. Практика показывает, что отражатель не обязательно должен быть круглым, а делать сторону квадрата более двух диаметров витка спирали нет смысла.Спираль я сделал из сетевого силового провода диаметром около 2 мм, используя одну изего жил, не снимая с неё изоляцию, так как она прозрачна для радиоволн, а медная проволока не окисляется в ней под воздействием внешней среды. На практике толщина провода оказалась почти в 5 раз меньше теоретической, вот почему диапазон антенны получился узким. В дециметровом диапазоне антенна примет хорошо только несколько телевизионных станций аналогового вещания, тем не менее, два цифровых пакета, распложённых рядом по частоте вполне уместятся в полосе её усиления. Ещё потребуется 75-Омный коаксиальный кабель с разъёмом. Не рекомендую сильно увлекаться длиной кабеля, особенно если антенна без усилителя, так как в его каждом метре теряется от 0,5 до 1 дБ усиления и длинному кабелю потребуется согласующее устройство. В своей конструкции я использовал 3-и метра кабеля.


Рис. 2.

Всего-то дел, намотать спираль, подсоединить к проводнику спирали кабель и прикрепить всё это к полотну лопаты. Но диэлектрического цилиндра нужного диаметра для фиксации провода спирали у меня не оказалось, и поэтому в качестве каркаса я использовал рейки и лист сухой фанеры, перенеся на неё размеры антенны с эскиза. Было бы круче, если бы использовались черенки от лопат вместо реек и фанеры, но я собирал только макет, и мне было удобно сделать всё на фанере. Когда обечайка стала обволакиваться проводом, самоделка была похожа на корпус летательного аппарата. Со стороны это выглядело менее безобидно, если бы я стал гнуть витки из медной трубки, как хотел раньше. Как я уже говорил, такую антенну удобно спрятать под конёк дома с крышей из мягкой кровли, андулина или шифера, прозрачной для радиоволн.


Фото 3. Испытание макета антенны.

Для проверки антенны я использовал комнату мансарды, где с помощью лестницы приподнял самоделку поближе к потолку. В этом месте раньше работала Место испытание тоже. Владимирская область, 90 км на восток от Останкино. Теперь здесь работает спиральная антенна без усилителя. Она «видит» телецентр через: вагонку, пергамин, 10 см базальтовой ваты, доску обрешётки, фанеру OSB , подстилочный ковёр, чешую мягкой кровли и сгусток гвоздей разной длины.Остаётся закрепить её ещё выше, под конёк дома или разобрать, ведь это всего только макет.


Фото 5. Размер и шаг предыдущих
конструкций антенн почти совпадают.

Для улучшения параметров антенны не помешает применить согласующее устройство – трансформатор, обеспечивающий переход с сопротивления антенны равного 180 Ом на коаксиальный кабель с сопротивлением 75 Ом. Это пластинка из тонкой меди в виде треугольника, расширяющегося к экрану. Место крепления пластинки и её размеры я подобрал экспериментальным путём, применив две пластмассовые прищепки. В домашних условиях это легко сделать с помощью телевизора, спустив антенну на более низкий уровень, при котором изображение будет «заснеженным». Необходимо двигать, поворачивая пластинку, и на слух, по уменьшению уровня шума в аудио канале при приёме аналогового сигнала, близкого по частоте к цифровому пакету, определить её местоположение. После чего запаять.

Несмотря на нелепость формы у этой антенны есть преимущество. Она без усилителя, который после разрядов молний часто вылетает. На практике два раза усилители выходили из строя во время грозы у наружных антенн, расположенных в 30-и метрах от столба воздушной электропроводки, в который попадали молнии. У антенны расположенной под крышей дома, в шести метрах от столба-разрядника, случаи выхода усилителя из строя не зарегистрированы.

Может выйти из строя блок питания самого усилителя, так как он, как правило, всегда под напряжением и ресурс его ограничен.

Ещё одно преимущество в том, что дальность этой антенны с усилителем будет больше, на сколько, проверьте сами.

Дополнение. Изменение конструкции антенны.

В этом году (2015) я решил доработать самодельную конструкцию спиральной антенны, используя вместо провода металлопластиковую трубку (металлопласт) диаметром 16 мм. Ранее собранные антенны уже прошли аналогичную операцию и заметно оживились. Претерпела оздоровление и спиральная антенна, но не обольщайтесь, прирост уровня сигнала составил только 10 процентов, а качество сигнала осталось на том же стопроцентном уровне.

Фото 7. Старая антенна.
Фото 8. Изменение конструкции.

Давно хотел сделать антенну, используя в качестве материала трубку. Останавливала схожесть с самогонным аппаратом и высокая себестоимость. Но вот материал найден и уже испытан на простых антеннах. Это легко гнущаяся трубка из высококачественного алюминия, обтянутого со всех сторон пластиком, продаётся на всех строительных рынках для прокладки водопровода.

Фото 10. Новая конструкция.
Фото 9. Банка - оправка.

Экономический

расчёт антенны.

Этот сложный расчёт мне пришлось проделать, зайдя в магазин «Всё для дома», на самой окраине Подмосковья и увидев металлопласт по цене 45 руб. Длина волны, частоты вещания, длина круга, число витков, усиление антенны….

4 метра выпалил я на кассе, подведя итог экономической части проекта. Себестоимость антенны не должна превысить минимальную акцизную стоимость бутылки водки.

Расчёт антенны.

Чисто по экономическим соображениям получилось 6,5 витков, на полвитка меньше предыдущей проволочной самоделки. Так же между витками я взял расстояние равное четвёртой части длины волны. Аналогичным образом подсчитал длину одного витка, но по практическим соображениям, уже имея опыт по изготовлению простых петлевых антенн, скорректировал зависимость металлопласта от частоты, сократил длину витка на 1,5 см. Так же подсчитал диаметр оправки, поделив скорректированную длину витка на 3,14. С учётом толщины трубки диаметр оправки взял на 8 мм меньше.

Регулировка.

Она заключалась в измерении КСВ (коэффициента стоячей волны) . Первоначально я измерил старую самоделку. Странно, но прибор заявлял об отличном согласовании с 50 Ом нагрузкой (КСВ = 1,5). С доработанной антенной тоже всё совпало, правда, при запитке с края полотна. Но конструктивно, уже впоследствии, я задействовал кабель по центру и КСВ упал до 2. Очень полезным оказался простенький самодельный КСВ-метр, совмещённый с самодельным генератором, настроенным на цифровые частоты вещания. С его помощью я смог не только определить КСВ антенны, но и проверить её работоспособность, когда каждый виток реагировал на подносимую крышку от кастрюльки качанием стрелки микроамперметра.

Итоги.

Изменение конструкции добавило прирост усиления на 10 процентов, и это при том, что в антенне на пол витка меньше. В целом она принимает программы в дециметровом диапазоне, работая в аналоговом режиме, не хуже антенны типа «волновой канал» (Уда – Яги), включающей в себя 12 директоров и усилитель с заявленным усилением не менее 26 дБ. Обе антенны расположены в одинаковых условиях на одном уровне от земли. Разница лишь в том, что работа покупной антенны, при приёме эфирного цифрового сигнала, зависит от погоды и времени дня, симулируя ухудшение прохождения радиоволн характерным крякающим звуком и зависанием телевизионных картинок, а то и полным отсутствием изображения. Радиоприём с самодельной антенной всегда постоянен.

Но в целом я остался недоволен данной конструкцией, поскольку ожидал от неё нечто большего, исключительно исходя из её габаритов и затраченных средств. Сравнивая эту спиральную антенну с предыдущей конструкцией , состоящую всего из двух фазируемых колец идентичного диаметра, сделанную из того же материала, я не нашёл существенного выигрыша, сравнивая их по уровням приёма.

Два фазированных кольца и шесть закрученных в спираль, дают усиление в теории 6 дБ и 10 дБ. Два кольца на открытом воздухе и 6,5 колец под крышей, на одинаковом уровне от земли и при практическом одинаковом уровне усиления в процентах. Может крыша и съела разницу в 4 дБ, а может реально трудно заметить эту разницу? В тоже время не выставлять же этот змеевик на улицу, открывая этим тему для лишних разговоров.

Упал ли я духом? Нет! Радиолюбительство - источник удовольствия. Займитесь радиолюбительством, ведь это интересно. Возможно, результат у вас будет лучшим.


Скорее всего, я ещё вернусь к этой спиральной антенне, ведь не заснула же она, кода антенна «волновой канал» перестала принимать эфир.


3.1. В процес­се развития радиотехники все больше требуются антенно-фидерные устройства, рассчитанные на работу в очень широком диапазоне ча­стот и притом без всякой перестройки. Частотная независимость таких антенно-фидерных устройств основана на принципе электродинамиче­ского подобия.

Этот принцип состоит в том, что основные параметры антенны (ДН и входное сопротивление) остаются неизменными, если изменение дли­ны волны сопровождается прямо пропорциональным изменением ли­нейных размеров активной области антенны. При соблюдении данного условия антенна может быть ча­стотно-независимой в неограничен­ном диапазоне волн. Однако разме­ры излучающей структуры конеч­ны и рабочий диапазон волн лю­бой антенны тоже ограничен.

Из этой группы антенн рассмот­рим плоские арифметические и равноугольные спирали и логариф­мически-периодические антенны.

Рис.4.

3.2. Арифметическая спираль вы­полняется в виде плоских металли­ческих лент или щелей в металли­ческом экране (рис. 4). Уравне­ние этой спирали в полярных координатах

где - радиус-вектор, отсчитываемый от полюса О; а - коэффициент, характеризующий приращение радиус-вектора на каждую единицу приращения полярного угла; b - начальное значение радиус- вектора.

Спираль может быть двухзаходной, четырёхзаходной и т. д. Если спираль двухзаходная, то для ленты (щели) /, показанной штриховы­ми линиями, угол отсчитывается от нуля, а для ленты //, показанной сплошными линиями, - от 180°, т. е. спираль образована совершенно идентичными лентами, повернутыми на 180° друг относительно друга.

Начальные точки ленты / соответствуют радиус-векторам, которые обозначим и. Следовательно, ширина ленты. Описав один оборот, лента занимает поло­жение D, в котором радиус-вектор больше начального на. На этом отрезке ВD размещаются две ленты и два зазора, и если ширина их одинаковая, то, Отсюда определяем коэффициент.

3.3. Питание спирали может быть противофазным, как на рис. 4, или синфазным. В первом случае токи через зажимы А, В, соединяю­щие ленты с фидером, имеют противоположные фазы. Путь тока в лен­те / больше, чем в ленте //, на полвитка. Например, в сечении СD лента // попадает, описав полвитка, а лента / - один виток, в сечение ЕF-соответственно полтора и два витка и т. д. Поскольку длина витка по мере развертывания спирали возрастает, увеличивается рас­хождение фазы токов в лентах. Обозначив средний диаметр витка находим сдвиг по фазе, соответствующий длине полувитка:

Если к этому прибавить начальный сдвиг, равный, то получим результирующее расхождение по фазе токов в смежных элементах двухпроводной линии

За счет второго слагаемого угол отличен от, а в таких условиях электромагнитные волны излучаются, даже если зазор между лентами мал по сравнению с длиной волны.

Интенсивно излучает только та часть спирали, в которой токи смеж­ных элементов обеих лент совпадают по фазе:

Подставляя, находим, что средний диаметр первого «резонанс­ного» кольца, а периметр этого кольца.Сред­ний диаметр и периметр второго (k=2 ), третьего (k=3 ) и т. д. «ре­зонансных» колец соответственно в три, пять, ... раз больше. Так как излучение радиоволн спиралью вызывает большое затухание тока от ее начала к концу, то интенсивно излучает только первое резонансное кольцо , а остальная, внешняя часть спирали как бы «отсекается» {явление отсечки излучающих токов}.

3.4. Активная часть спирали представляет наибольший интерес и по другой причине. Затухание тока, вызванное излучением, настолько велико, что отражение от конца спирали практически отсутствует, т. е. ток в спирали распределяется по закону бегущих волн. К тому же пе­риметр первого резонансного кольца равен длине волны. В таких условиях, как показано в п. 1, происходит осевое излучение с вращаю­щейся поляризацией, которое в данном случае наиболее желательно.

Диаметр спирали должен быть достаточно велик, чтобы на макси­мальной волне диапазона сохранилось первое «резонансное» кольцо (),а с уменьшением длины волны это кольцо долж­но сжиматься до тех пор () , пока оно еще может полностью разме­ститься вокруг узла питания. Тогда в пределах отноше­ние среднего периметра первого «резонансного» кольца к длине волны остается постоянным и тем самым выполняется основное условие сохранения направленных свойств антенны в широком диапазоне волн Правда, направленность арифметической спирали невелика (60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний пери­метр, равный.

Второе условие получения диапазонной антенны-постоянство входного сопротивления - достигается здесь тем, что спираль ра­ботает в режиме бегущей волны тока. Это сопротивление активное (100-200 Ом). При питании от коаксиального фидера (Ом) согласование производят ступенчатым или плавным трансформатором.

3.5. Спираль излучает по обе стороны своей оси. Чтобы сделать ан­тенну однонаправленной, ленточную спираль помещают на диэлектри­ческой пластине толщиной, другую сторону которой металлизи­руют. Если же спираль щелевая, то ее вырезают на стенке металличе­ского короба; тогда противоположная стенка короба играет роль отра­жающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пла­стине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн 7.5 ... 15 см при, ширине диаграммы направлен­ности 2" = 60... 80° и коэффициенте эллиптично­сти в направлении макси­мума главного лепестка менее 3 дБ, т. е. практиче­ски поляризацию можно считать круговой. Плоские спиральные антенны удоб­но изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

Введение

Современное состояние техники связи радиодиапазона нельзя представить без спиральных антенн. Этот тип антенных систем используется благодаря своим характерным качеством: широкополосность, эллиптическая поляризация поля при малых габаритах и простой конструкции.

Спиральные антенны используются как самостоятельно, так и в качестве элементов антенной решётки, облучателя, например, зеркальной антенны, что к преимуществам спиральных антенн прибавляет и направленность.

Благодаря свойству эллиптической поляризации спиральные антенны нашли применение в техники космической связи, поскольку, в ряде случаев поляризация принимаемого сигнала может быть случайной, например, от объектов, положение которых в пространстве изменяется или может быть произвольным (эти объекты могут быть: самолёты, ракеты, спутники и т.д.)

В радиолокации антенны с вращающейся поляризацией позволяют уменьшить помехи создаваемые отражениями от осадков и от поверхности Земли, обусловленные тем, что направление вектора напряжённости электрического поля изменяется на обратное.

Поле с вращающейся поляризацией может применяться также при работе одной и той же антенны на передачу и приёма для увеличения развязки между каналами (при этом излучаемые и принимаемые поля должны иметь противоположное направление вращение).

В настоящие время спиральные антенны широко применяются в качестве антенн устройств личной связи. Значительная доля сотовых телефонов, транковых аппаратов, и мобильных радиостанций содержат в своей конструкции спиральные антенны, работающие в режиме перпендикулярной оси излучения.

В настоящие время я собираюсь исследовать диаграммы направленности плоских спиральных и цилиндрических СА, проанализировать их зависимость от длинны, проследить изменение направленности при изменении параметров антенны. Так же сравнить характеристики СА между собой и с другими типами антенн.

В начале каждого раздела берется определенный тип СА. И дальше будут идти результаты компьютерного анализа для разных режимов и типов. Все расчеты и построения графиков будут проведены в программе МаthCAD 2001i.

Предполагается включение в приложения программ простейшего расчета характеристик спиральной антенны.

Особенностью теории СА является сложность расчета поля антенны.

Из различных конструкций диапазонных антенн эллиптической поляризации наибольшее применение получила спиральная антенна, предложенная Краусом в 1947 году, и ее различные модификации.

Чтобы иметь возможность производить расчет перечисленных характеристик и параметров СА в широком интервале частот, необходимо установить зависимость фазовых скоростей волн тока, распространяющихся вдоль провода в спирали от геометрии и частоты возбуждающего спираль напряжения.

Расчетам фазовой скорости волны тока, распространяющейсявдоль провода спирали, и установлению зависимости фазовых скоростей от геометрии и частоты возбуждающего спираль напряжения, посвящено много работ, первая попытка решения этой задачи принадлежит Поклингтону, который еще в 1897 году, решив задачу об определении фазовой скорости электромагнитной волны, распространяющейся вдоль прямого провода и вдоль кольца, пытался рассмотреть вопрос о распространении электромагнитной волны вдоль спирали. Это удалось ему сделать в ряде частных случаев. Если не считать отдельных работ в этом направлении, связанных с распространением электромагнитной волны в катушках интерес к этой теме возник в конце 40-х годов в связи с широким применением спиралей в качестве замедляющих структур.


Глава 1. Типы спиральных антенн

1.1 Типы спиральных антенн

Среди различных типов широкополосных антенн важное место занимают разнообразные спиральные антенны. Спиральные антенны являются слабо- и средненаправленными широкополосными антеннами эллиптической и управляемой поляризации. Они применяются в качестве самостоятельных антенн, возбудителей волноводно-рупорных антенн эллиптической и управляемой поляризации, элементов антенных решеток.

Спиральные антенны – это антенны поверхностных волн. По виду направителя (замедляющей системы) и способу обеспечения работы в широком диапазоне частот их можно разделить на:

· цилиндрические регулярные, у которых геометрические параметры (шаг, радиус, диаметр провода) постоянны по всей длине и широкополосность обусловлена наличием дисперсии фазовой скорости;

· эквиугольные или частотно-независимые (конические, плоские);

· нерегулярные, к которым можно отнести все другие типы спиральных антенн.


Рис.1.1. 3 Нерегулярные спиральные антенны:

а – плоская с постоянным шагом намотки (архимедова);

б – коническая с постоянным шагом намотки;

в – на поверхности эллипсоида вращения с постоянным углом намотки.


Рис.1.1.4 Нерегулярная цилиндрическая спиральная антенна (с переменным шагом)

По числу заходов (ветвей) и способу их намотки спиральные антенны могут быть одно- и многозаходные с односторонней или двусторонней (встречной) намотки.

Отсутствие или наличие дополнительного замедления фазовой скорости и способ его реализации позволяют разделить спиральные антенны на следующие типы:

· из гладкого провода в однородном диэлектрике (воздухе),

· из провода, обладающего собственным замедлением (импедансные спиральные антенны),

· из провода с собственным замедлением и с диэлектриком (импедансные спирально-диэлектрические антенны).


Рис. 1.1.5 Спиральные антенны с дополнительным замедлением:

а – импедансная;

б,в – спирально-диэлектрическая;

г – импедансная спирально-диэлектрическая.

Одним из основных свойств спиральных антенн является их способность работать в широкой полосе частот с коэффициентом перекрытия от 1.5 до 10 и более. Все спиральные антенны – это антенны бегущей волны, но одно обстоятельство само по себе не обуславливает работы спиральных антенн в диапазоне частот с таким коэффициентом перекрытия.

Работа однозаходных регулярных цилиндрических спиральных антенн и их модификаций в диапазоне частот возможна благодаря их дисперсионным свойствам, вследствие которых в широком диапазоне частот фазовая скорость поля вдоль оси спирали близка к скорости света, отражение от свободного конца спирали мало, длина волны в проводе спирали примерно равна длине витка.

В многозаходных цилиндрических спиральных антеннах рабочий диапазон дополнительно расширяется вследствие подавления в них ближайших низших и высших типов волн, искажающих диаграмму направленности основного типа.

Спиральные антенны с односторонней намоткой излучают поле с эллиптической, близкой к круговой, поляризацией. Направление вращения вектора поля соответствует направлению намотки спирали. Для получения линейной и управляемой поляризации используют спиральные антенны с двусторонней (встречной) намоткой.

Рис.1.1.6. Эквиугольные спиральные антенны с двусторонней (встречной) намоткой: а – коническая четырехзаходная; б – плоская трехзаходная.

Форма частотно-независимых (плоских и конических эквиугольных) спиральных антенн определяется только углами. Каждой длине волны в пределах рабочего диапазона соответствует излучающий участок неизменной формы и постоянных электрических размеров. Поэтому ширина диаграммы направленности и входного сопротивления приближенно остаются постоянными в весьма широких диапазонах частот (10:1 ...20:1).

Для получения однонаправленного излучения с эллиптической поляризацией в меньших диапазонах частот (2:1 ... 4:1) нет необходимости строго выдерживать форму антенны в соответствии с условием частотной независимости. Если при переходе от одной длины волны к другой форма и электрические размеры излучающего элемента повторяются хотя бы приближенно, антенна работает в диапазоне частот с меньшим постоянством характеристик и параметров. Следуя этому, можно построить очень широкое, не подчиняющееся точно принципу частотной независимости семейство антенн в виде одно- или многозаходных спиралей, навитых (по различным законам намотки) на различных поверхностях вращения. Иногда такие антенны называют квазичастотно-независимыми.

Квазичастотно-независимые спиральные антенны для получения управляемой и линейной поляризации также выполняются с двусторонней намоткой. Для получения управляемой, линейной и круговой поляризации могут также применяться различные (цилиндрические, эквиугольные и др.) двухзаходные спиральные антенны.

Рис.1.1.7. Квазичастотно-независимые спиральные антенны с двусторонней (встречной) намоткой и постоянным шагом: а – коническая четырехзаходная; б – полусферическая четырехзаходная; в – эллипсоидная четырехзаходная.


Этот тип антенн хорошо подходит для дальнего приёма эфирного телевизионного цифрового сигнала. Подкупает простота изделия, всего две основные детали: отражатель из снегоуборочной лопаты и спираль из мотка силового провода. Ни одного паяного соединения, всё на винтах и скрутке. Нет сложных согласующих элементов. Тем не менее, коэффициент усиления конструкции достигает более 10 дБ, что позволяет использовать её в некоторых случаях без усилителя. Именно на эту антенну без усилителя я принял за городом цифровой телевизионный сигнал.


Хочу напомнить, что любая дециметровая антенна годится для цифрового канала вещания, разница будет только в дальности приёма. Но не всякая антенна обеспечит максимальный коэффициент усиления и согласования именно на нужной частоте. Какая бы сложная антенна не была, она имеет провалы и пики усиления во всём своём диапазоне принимаемых частот.

Именно спиральные антенны следили за полётом первого космонавта Юрия Гагарина.Когда первые советские луноходы, ориентируя спирали, бороздили поверхность Луны, я мечтал сделать такую же космическую антенну.


Фото 2.

Нет ничего хуже незавершенных дел. За основу выбираю самую простую из всех типов спиральных антенн. Это однозаходная, спиральная, цилиндрическая (бывает ещё коническая), регулярная, то есть с постоянным шагом намотки или одинаковым расстоянием между витками. Таким образом, уже название антенны говорит о её конструкции. Именно такую конструкцию впервые предложилKraus J .D .

«Helical beam antenna ». – «Electronics », 1947 год. V 20, N 4. Р. 109.

Рекомендую для радиолюбителей лучшую настольную книгу «Антенны», издание 11, том 2. Автор Карл Ротхаммель. В книге собрано много практического материала почти всем видам антенн. Характеристики, параметры, практические расчёты, рекомендации.

Из этого издания я привожу характеристики спиральной антенны.


Рис. 1.

Необходимо узнать на какой частоте в вашем регионе идёт цифровое вещание и значение этой частоты перевести в метры. Длина волны в метрах = 300 / F (частота в МГц).

Для московских частот вещания двух цифровых пакетов, я выбрал среднюю частоту 522 МГц, что соответствует длине волны лямбда 57 см. В этом случае диаметр витка равен D = 17,7 см, расстояние между витками 13,7 см, расстояние от экрана до витка 7,4 см, а ширина экрана должна уложиться в 35 см.

В качестве экрана (отражателя) мне потребовалась неправильная снегоуборочная лопата из красивой блестящей нержавейки, постоянно гнущейся под тяжестью снега. Практика показывает, что отражатель не обязательно должен быть круглым, а делать сторону квадрата более двух диаметров витка спирали нет смысла.Спираль я сделал из сетевого силового провода диаметром около 2 мм, используя одну изего жил, не снимая с неё изоляцию, так как она прозрачна для радиоволн, а медная проволока не окисляется в ней под воздействием внешней среды. На практике толщина провода оказалась почти в 5 раз меньше теоретической, вот почему диапазон антенны получился узким. В дециметровом диапазоне антенна примет хорошо только несколько телевизионных станций аналогового вещания, тем не менее, два цифровых пакета, распложённых рядом по частоте вполне уместятся в полосе её усиления. Ещё потребуется 75-Омный коаксиальный кабель с разъёмом. Не рекомендую сильно увлекаться длиной кабеля, особенно если антенна без усилителя, так как в его каждом метре теряется от 0,5 до 1 дБ усиления и длинному кабелю потребуется согласующее устройство. В своей конструкции я использовал 3-и метра кабеля.


Рис. 2.

Всего-то дел, намотать спираль, подсоединить к проводнику спирали кабель и прикрепить всё это к полотну лопаты. Но диэлектрического цилиндра нужного диаметра для фиксации провода спирали у меня не оказалось, и поэтому в качестве каркаса я использовал рейки и лист сухой фанеры, перенеся на неё размеры антенны с эскиза. Было бы круче, если бы использовались черенки от лопат вместо реек и фанеры, но я собирал только макет, и мне было удобно сделать всё на фанере. Когда обечайка стала обволакиваться проводом, самоделка была похожа на корпус летательного аппарата. Со стороны это выглядело менее безобидно, если бы я стал гнуть витки из медной трубки, как хотел раньше. Как я уже говорил, такую антенну удобно спрятать под конёк дома с крышей из мягкой кровли, андулина или шифера, прозрачной для радиоволн.


Фото 3. Испытание макета антенны.

Для проверки антенны я использовал комнату мансарды, где с помощью лестницы приподнял самоделку поближе к потолку. В этом месте раньше работала фазированная рамка с усилителем 35 дБ и с трудом покупная комнатная антенна с усилителем 30 дБ. Место испытание тоже. Владимирская область, 90 км на восток от Останкино. Теперь здесь работает спиральная антенна без усилителя. Она «видит» телецентр через: вагонку, пергамин, 10 см базальтовой ваты, доску обрешётки, фанеру OSB , подстилочный ковёр, чешую мягкой кровли и сгусток гвоздей разной длины.Остаётся закрепить её ещё выше, под конёк дома или разобрать, ведь это всего только макет.


Фото 5. Размер и шаг предыдущих
конструкций антенн почти совпадают.

Для улучшения параметров антенны не помешает применить согласующее устройство – трансформатор, обеспечивающий переход с сопротивления антенны равного 180 Ом на коаксиальный кабель с сопротивлением 75 Ом. Это пластинка из тонкой меди в виде треугольника, расширяющегося к экрану. Место крепления пластинки и её размеры я подобрал экспериментальным путём, применив две пластмассовые прищепки. В домашних условиях это легко сделать с помощью телевизора, спустив антенну на более низкий уровень, при котором изображение будет «заснеженным». Необходимо двигать, поворачивая пластинку, и на слух, по уменьшению уровня шума в аудио канале при приёме аналогового сигнала, близкого по частоте к цифровому пакету, определить её местоположение. После чего запаять.

Несмотря на нелепость формы у этой антенны есть преимущество. Она без усилителя, который после разрядов молний часто вылетает. На практике два раза усилители выходили из строя во время грозы у наружных антенн, расположенных в 30-и метрах от столба воздушной электропроводки, в который попадали молнии. У антенны расположенной под крышей дома, в шести метрах от столба-разрядника, случаи выхода усилителя из строя не зарегистрированы.

Может выйти из строя блок питания самого усилителя, так как он, как правило, всегда под напряжением и ресурс его ограничен.

Ещё одно преимущество в том, что дальность этой антенны с усилителем будет больше, на сколько, проверьте сами.

Дополнение. Изменение конструкции антенны.

В этом году (2015) я решил доработать самодельную конструкцию спиральной антенны, используя вместо провода металлопластиковую трубку (металлопласт) диаметром 16 мм. Ранее собранные антенны уже прошли аналогичную операцию и заметно оживились. Претерпела оздоровление и спиральная антенна, но не обольщайтесь, прирост уровня сигнала составил только 10 процентов, а качество сигнала осталось на том же стопроцентном уровне.

Фото 7. Старая антенна.
Фото 8. Изменение конструкции.

Давно хотел сделать антенну, используя в качестве материала трубку. Останавливала схожесть с самогонным аппаратом и высокая себестоимость. Но вот материал найден и уже испытан на простых антеннах. Это легко гнущаяся трубка из высококачественного алюминия, обтянутого со всех сторон пластиком, продаётся на всех строительных рынках для прокладки водопровода.

Фото 10. Новая конструкция.
Фото 9. Банка - оправка.

Экономический

расчёт антенны.

Этот сложный расчёт мне пришлось проделать, зайдя в магазин «Всё для дома», на самой окраине Подмосковья и увидев металлопласт по цене 45 руб. Длина волны, частоты вещания, длина круга, число витков, усиление антенны….

4 метра выпалил я на кассе, подведя итог экономической части проекта. Себестоимость антенны не должна превысить минимальную акцизную стоимость бутылки водки.

Расчёт антенны.

Чисто по экономическим соображениям получилось 6,5 витков, на полвитка меньше предыдущей проволочной самоделки. Так же между витками я взял расстояние равное четвёртой части длины волны. Аналогичным образом подсчитал длину одного витка, но по практическим соображениям, уже имея опыт по изготовлению простых петлевых антенн, скорректировал зависимость металлопласта от частоты, сократил длину витка на 1,5 см. Так же подсчитал диаметр оправки, поделив скорректированную длину витка на 3,14. С учётом толщины трубки диаметр оправки взял на 8 мм меньше.

Регулировка.

Она заключалась в измерении КСВ (коэффициента стоячей волны) самодельным КСВ-метром . Первоначально я измерил старую самоделку. Странно, но прибор заявлял об отличном согласовании с 50 Ом нагрузкой (КСВ = 1,5). С доработанной антенной тоже всё совпало, правда, при запитке с края полотна. Но конструктивно, уже впоследствии, я задействовал кабель по центру и КСВ упал до 2. Очень полезным оказался простенький самодельный КСВ-метр, совмещённый с самодельным генератором, настроенным на цифровые частоты вещания. С его помощью я смог не только определить КСВ антенны, но и проверить её работоспособность, когда каждый виток реагировал на подносимую крышку от кастрюльки качанием стрелки микроамперметра.

Итоги.

Изменение конструкции добавило прирост усиления на 10 процентов, и это при том, что в антенне на пол витка меньше. В целом она принимает программы в дециметровом диапазоне, работая в аналоговом режиме, не хуже антенны типа «волновой канал» (Уда – Яги), включающей в себя 12 директоров и усилитель с заявленным усилением не менее 26 дБ. Обе антенны расположены в одинаковых условиях на одном уровне от земли. Разница лишь в том, что работа покупной антенны, при приёме эфирного цифрового сигнала, зависит от погоды и времени дня, симулируя ухудшение прохождения радиоволн характерным крякающим звуком и зависанием телевизионных картинок, а то и полным отсутствием изображения. Радиоприём с самодельной антенной всегда постоянен.

Но в целом я остался недоволен данной конструкцией, поскольку ожидал от неё нечто большего, исключительно исходя из её габаритов и затраченных средств. Сравнивая эту спиральную антенну с предыдущей конструкцией самодельной антенной для приёма эфирного цифрового телевидения , состоящую всего из двух фазируемых колец идентичного диаметра, сделанную из того же материала, я не нашёл существенного выигрыша, сравнивая их по уровням приёма.

Два фазированных кольца и шесть закрученных в спираль, дают усиление в теории 6 дБ и 10 дБ. Два кольца на открытом воздухе и 6,5 колец под крышей, на одинаковом уровне от земли и при практическом одинаковом уровне усиления в процентах. Может крыша и съела разницу в 4 дБ, а может реально трудно заметить эту разницу? В тоже время не выставлять же этот змеевик на улицу, открывая этим тему для лишних разговоров.

Упал ли я духом? Нет! Радиолюбительство - источник удовольствия. Займитесь радиолюбительством, ведь это интересно. Возможно, результат у вас будет лучшим.


Скорее всего, я ещё вернусь к этой спиральной антенне, ведь не заснула же она, кода антенна «волновой канал» перестала принимать эфир.


Покупать хорошую антенну на дачу не всегда целесообразно. Особенно если она посещается время от времени. Дело не столько в затратах, сколько в том, что ее через некоторое время может не оказаться на месте. Поэтому многие предпочитают делать антенну для дачи самостоятельно. Затраты минимальные, качество неплохое. И самый важный момент — ТВ антенна своими руками может быть сделана за полчаса-час и потом, в случае необходимости, легко повторяется…

Цифровое телевидение в формате DVB-T2 передается в диапазоне ДМВ, причем цифровой сигнал или есть, или его нет. Если сигнал принимается, то картинка получается хорошего качества. В связи с этим. для приема цифрового телевидения подходит любая дециметровая антенна. Многим радиолюбителям знакома телеантенна, которую называют «зигзагообразная» или «восьмерка». Эта ТВ антенна своими руками собирается буквально за считанные минуты.

Для уменьшения количества помех сзади антенны ставят отражатель. Расстояние между антенной и отражателем подбирают экспериментально — по «чистоте» картинки
Можно на стекле прикрепить фольгу и получить неплохой сигнал….
Медная трубка или проволока — оптимальный вариант, хорошо гнется, легко пр

Делать ее очень просто, материал — любой токопроводящий металл: трубка, прут, проволока, полоса, уголок. Принимает она, несмотря на простоту, хорошо. Выглядит как два квадрата (ромба), соединенных между собой. В оригинале за квадратом располагается отражатель — для более уверенного приема сигнала. Но он больше нужен для аналоговых сигналов. Для приема цифрового телевидения вполне можно обойтись и без него или установить потом, если прием будет чересчур слабым.

Материалы

Оптимально для этой самодельной телеантенны подходит медная или алюминиевая проволока диаметром 2-5 мм. В этом случае сделать все можно буквально за час. Также можно использовать трубку, уголок, полосу из меди или алюминия, но надо будет какое-то приспособление чтобы выгнуть рамки нужной формы. Проволоку же можно гнуть молотком, закрепив ее в тисках.

Также потребуется коаксиальный антенный кабель требуемой длины, штекер подходящий к разъему на вашем телевизоре, какое-то крепление для самой антенны. Кабель можно брать с сопротивлением 75 Ом и 50 Ом (второй вариант хуже). Если делается ТВ антенна своими руками для установки на улице, обратите внимание на качество изоляции.

Крепление зависит от того, где вы собираетесь повесить самодельную антенну для цифрового телевидения. На верхних этажах можно попробовать использовать ее как домашнюю и повесить на шторы. Тогда нужны крупные булавки. На даче или если выносить самодельную телеантенну на крышу, надо будет крепить ее к шесту. Для этого случая ищите подходящие фиксаторы. Для работы еще понадобится паяльник, наждачная бумага и/или напильник, надфиль.

Нужен ли расчет

Для приема цифрового сигнала нет необходимости считать длину волны. Просто желательно сделать антенну более широкополосной — чтобы принимать как можно больше сигналов. Для этого в оригинальную конструкцию (на фото выше) внесены некоторые изменения (дальше по тексту).

При желании можете сделать расчет. Для этого надо узнать на какой волне транслируется сигнал, разделить на 4 и получить требуемую сторону квадрата. Чтобы получить требуемое расстояние между двумя частями антенны, делайте наружные стороны ромбов чуть длиннее, внутренние — короче.

Чертеж антенны «восьмерки» для приема цифрового ТВ

  • Длина «внутренней» стороны прямоугольника (В2) — 13 см,
  • «наружной» (В1) — 14 см.

За счет разницы длин образуется расстояние между квадратами (они соединяться не должны). Два крайних участка делают длиннее на 1 см — чтобы можно было свернуть петлю, к которой припаивается коаксиальный антенный кабель.

Изготовление рамки

Если посчитать все длины, получится 112 см. Отрезаем проволоку или тот материал, который у вас есть, берем пассатижи и линейку, начинаем гнуть. Углы должны быть под 90° или около того. С длинами сторон можно немного ошибаться — это не смертельно. Получается так:

  • Первый участок — 13 см + 1 см на петлю. Петлю можно согнуть сразу.
  • Два участка по 14 см.
  • Два по 13 см, но с поворотом в противоположную сторону — это место перегиба на второй квадрат.
  • Снова два по 14 см.
  • Последний — 13 см + 1 см на петлю.

Собственно рамка антенны готова. Если все удалось сделать правильно, между двумя половинами в середине получилось расстояние 1,5-2 см. Могут быть небольшие расхождения. Далее петли и место перегиба зачищаем до чистого металла (обработать наждаком с мелким зерном), залудить. Две петли соединить, обжать пассатижами чтобы держались крепко.

Подготовка кабеля

Берем антенный кабель, осторожно зачищаем. Как это делать показано на пошаговом фото. Зачистить кабель надо с двух сторон. Один край будет крепиться к антенне. Тут зачищаем так, чтобы провод торчал на 2 см. Если получилось больше, лишнее (потом) можно будет отрезать. Экран (фольгу) и оплетку скрутить в жгут. Получилось два проводника. Один — центральная моножила кабеля, второй — скрученный из множества проводков оплетки. Оба нужны и их нужно залудить.

Ко второму краю подпаиваем штекер. Тут достаточно длины 1 см или около того. Также сформировать два проводника, залудить.

Штекер в тех местах, где будем проводить пайку, протереть спиртом или растворителем, зачистить наждаком (можно надфилем). На кабель надеть пластиковую часть штекера, теперь можно начинать пайку. К центральному выходу штекера припаиваем моножилу, к боковому — многожильную скрутку. Последнее — обжать захват вокруг изоляции.

Дальше можно просто накрутить пластиковый наконечник, в можно залить клеем или токонепроводящим герметиком (это важно). Пока клей/герметик не застыл, быстро собираем штекер (накручиваем пластиковую часть), убираем излишки состава. Так штекер будет почти вечным.

DVB-T2 ТВ антенна своими руками: сборка

Теперь осталось соединить кабель и рамку. Так как мы не привязывались к конкретному каналу, припаивать кабель будем к средней точке. Это увеличит широкополосность антенны — принимать будет больше каналов. Потому второй разделанный конец кабеля припаиваем к двум сторонам посередине (те, которые зачищали и лудили). Еще одно отличие от «оригинальной версии» — кабель не надо обводить по рамке и припаивать внизу. Это тоже расширит диапазон приема.

Собранную антенну можно проверить. Если прием нормальный, можно закончить сборку — залить герметиком места пайки. Если прием плохой, попробуйте для начала найти место, где ловится лучше. Если положительных изменений нет, можно попробовать заменить кабель. Для простоты эксперимента можно использовать обычную телефонную лапшу. Она стоит копейки. К ней припаять штекер и рамку. Попробовать с ней. Если «ловит» лучше — дело в плохом кабеле. В принципе, можно работать и на «лапше», но недолго — она быстро придет в негодность. Лучше, конечно, поставить нормальный антенный кабель.

Для защиты места соединения кабеля и рамки антенны от атмосферных воздействий, места пайки можно замотать обычной изолентой. Но это способ ненадежный. Если не забудете, можно перед пайкой надеть несколько термоусадочных трубок, чтобы с их помощью заизолировать. Но самый надежный способ — залить все клеем или герметиком (они не должны проводить ток). В качестве «корпуса» можно использовать крышки на 5-6 литровые баллоны с водой, обычные пластиковые крыши на банки и т.п. В нужных местах делаем углубления — чтобы рамка «улеглась» в них, не забываем про вывод кабеля. Заливаем герметизирующим составом, ждем пока схватится. Все, ТВ антенна своими руками для приема цифрового телевидения готова.

Самодельная антенна двойной и тройной квадрат

Это узкополосная антенна, которая используется если принимать надо слабый сигнал. Она может даже помочь, если более слабый сигнал «забивается» более мощным. Единственный недостаток — нужна точная ориентация на источник. Эту же конструкцию можно сделать чтобы принимать цифровое телевидение.

Можно сделать и пять рамок — для более уверенного приема
Красить или лакировать нежелательно — ухудшается прием. Такое возможно только в непосредственной близости с передатчиком

Достоинства этой конструкции — прием будет уверенным даже на значительном расстоянии от ретранслятора. Только надо будет конкретно узнать частоту вещания, выдержать размеры рамок и согласующего устройства.

Конструкция и материалы

Делают ее из трубок или проволоки:

  • 1-5 ТВ канал МВ диапазона — трубки (медь, латунь, алюминий) диаметром 10-20 мм;
  • 6-12 ТВ канал МВ диапазона — трубки (медь, латунь, алюминий) 8-15 мм;
  • ДМВ диапазон — медная или латунная проволока диаметром 3-6 мм.

Антенна двойной квадрат представляет собой две рамки, соединенных двумя стрелами — верхней и нижней. Меньшая рамка — вибратор, большая — рефлектор. Антенна, состоящая из трех рамок дает больший коэффициент усиления. Третий, самый маленький, квадрат называется директор.

Верхняя стрела соединяет середины рамок, может быть сделана из металла. Нижняя — из изоляционного материала (текстолит, геттинакс, деревянная планка). Рамки должны устанавливаться так, чтобы их центры (точки пересечения диагоналей) находились на одной прямой. И направлена эта прямая должна быть на передатчик.

Активная рамка — вибратор — имеет разомкнутый контур. Ее концы прикручиваются к текстолитовой пластине размером 30*60 мм. Если сделаны рамки из трубки, края расплющивают, в ни проделывают отверстия и через них крепят нижнюю стрелу.

Мачта для этой антенны должна быть деревянной. Во всяком случае, верхняя ее часть. Причем деревянная часть должна начинаться на расстоянии не менее 1,5 метров от уровня рамок антенны.

Размеры

Все размеры для изготовления этой ТВ антенны своими руками приведены в таблицах. Первая таблица — для метрового диапазона, вторая — для дециметрового.

В трехрамочных антеннах расстояние между концами вибраторной (средней) рамки делают больше — 50 мм. Остальные размеры даны в таблицах.

Подключение активной рамки (вибратора) через короткозамкнутый шлейф

Так как рамка — симметричное устройство, а подключить ее надо к несимметричному коаксиальному антенному кабелю, необходимо согласующее устройство. В данном случае обычно используют симметритрующий короткозамкнутый шлейф. Его делают из отрезков антенного кабеля. Правый отрезок называют «шлейф», левый — «фидер». К месту соединения фидера и шлейфа крепится кабель, который идет к телевизору. Длинна отрезков выбирается исходя из длины волн принимаемого сигнала (смотрите таблицу).

Короткий отрезок провода (шлейф) разделывают с одного конца, удалив алюминиевый экран и скрутив оплетку в плотный жгут. Его центральный проводник можно срезать до изоляции, так как он не играет значения. Разделывают и фидер. Тут тоже удаляют алюминиевый экран и скручивают оплетку в жгут, но центральный проводник остается.

Дальнейшая сборка происходит так:

  • Оплетку шлейфа и центральный проводник фидера припаиваются к левому концу активной рамки (вибратору).
  • Оплетка фидера припаивается к правому концу вибратора.
  • Нижний конец шлейфа (оплетку) соединяют с оплеткой фидера с помощью жесткой металлической перемычки (можно использовать проволоку, только убедиться в хорошем контакте с оплеткой). Кроме электрического соединения она еще задает расстояние между участками согласующего устройства. Вместо металлической перемычки можно закрутить в жгут оплетку нижней части шлейфа (снять изоляцию на этом участке, удалить экран, свернуть в жгут). Для обеспечения хорошего контакта жгуты спаять между собой легкоплавким припоем.
  • Куски кабеля должны быть параллельны. Расстояние между ними — около 50 мм (возможны некоторые отклонения). Для фиксации расстояния используют фиксаторы из диэлектрического материала. Также можно прикрепить согласующее устройство к текстолитовой пластине, например.
  • Кабель, идущий к телевизору припаивается к нижней части фидера. Оплетка соединяется с оплеткой, центральный проводник — с центральным проводником. Для уменьшения количества соединений фидер и кабель к телевизору можно сделать единым. Только в том месте, где должен заканчиваться фидер надо снять изоляцию чтобы можно было установить перемычку.

Это согласующее устройство позволяет избавиться от помех, расплывшегося контура, второго размытого изображения. Особенно оно пригодиться на большом расстоянии от передатчика, когда сигнал будет забиваться помехами.

Другой вариант тройного квадрата

Чтобы не подключать короткозамкнутый шлейф, вибратор антенны тройной квадрат делают удлиненным. В этом случае можно подключать кабель напрямую к рамке как показано на рисунке. Только высота, на которой припаивается антенный провод, определяется в каждом случае индивидуально. После сборки антенны проводят «испытания». Подключают кабель к телевизору, центральный проводник и оплетку передвигают вверх/вниз, добиваясь лучшего изображения. В том положении, где картинка будет наиболее четкой, припаивают отводы антенного кабеля, места пайки изолируют. Положение может быть любым — от нижней перемычки, до места перехода на рамку.

Иногда одна антенна не дает требуемого эффекта. Сигнал получается слабым изображение — черно-белым. В этом случае стандартное решение — установить усилитель телевизионного сигнала.

Самая проста антенна для дачи — из металлических банок

Для изготовления этой телевизионной антенны кроме кабеля нужны будут только две алюминиевых или жестяных банки да кусок деревянной планки или пластиковой трубы. Банки должны быть металлическими. Можно брать пивные алюминиевые, можно — жестяные. Главное условие — чтобы стенки были ровными (не ребристыми).

Банки промывают и высушивают. Конец коаксиального провода разделывают — скрутив жилы оплетки и очистив центральную жилу от изоляции получают два проводника. Их крепят к банкам. Если умеете , можно припаять. Нет — берете два маленьких самореза с плоскими шляпками (можно «блошки» для гипсокартона), на концах проводников скручиваете петлю, в нее продеваете саморез с установленной на нем шайбой, прикручиваете к банке. Только перед этим надо металл банки очистить — сняв налет при помощи наждачной бумаги с тонким зерном.

Банки закрепляют на планке. Расстояние между ними подбирают индивидуально — по лучшей картинке. Не стоит надеяться на чудо — в нормальном качестве будет один-два канала, а может и нет… Зависит от положения ретранслятора, «чистоты» коридора, того, насколько правильно ориентирована антенна… Но как выход в аварийной ситуации — это отличный вариант.

Простая антенна для Wi-Fi из металлической банки

Антенну для приема сигнала Wi-Fi тоже можно сделать из подручных средств — из консервной банки. Эта ТВ антенна своими руками может быть собрана за пол часа. Это если все делать неторопясь. Банка должна быть из металла, с ровными стенками. Отлично подходят высокие и узкие консервные банки. Если ставить самодельную антенну будете на улице, найдите банку с пластиковой крышкой (как на фото). Кабель берут антенный, коаксиальный, сопротивлением 75 Ом.

Кроме банки и кабеля потребуется еще:

  • радиочастотный соединитель RF-N;
  • кусок медной или латунной проволоки диаметром 2 мм и длиной 40 мм;
  • кабель с гнездом, подходящим к Wi-Fi карте или адаптеру.

Передатчики Wi-Fi работают на частоте 2,4 ГГц с длинной волны 124 мм. Так вот, банку желательно выбрать такую, чтобы ее высота была не менее 3/4 длины волны. Для данного случая лучше чтобы она была больше 93 мм. Диаметр банки должен быть как можно ближе к половине длины волны — 62 мм для данного канала. Некоторые отклонения могут быть, но чем ближе к идеалу — тем лучше.

Размеры и сборка

При сборке в банке делают отверстие. Его надо расположить строго в нужной точке. Тогда сигнал будет усиливаться в несколько раз. Он зависит от диаметра выбранной банки. Все параметры приведены в таблице. Измеряете точно диаметр вашей банки, находите нужную строчку, имеете все нужные размеры.

D - диаметр Нижняя граница затухания Верхняя граница затухания Lg 1/4 Lg 3/4 Lg
73 мм 2407.236 3144.522 752.281 188.070 564.211
74 мм 2374.706 3102.028 534.688 133.672 401.016
75 мм 2343.043 3060.668 440.231 110.057 330.173
76 мм 2312.214 3020.396 384.708 96.177 288.531
77 мм 2282.185 2981.170 347.276 86.819 260.457
78 мм 2252.926 2942.950 319.958 79.989 239.968
79 мм 2224.408 2905.697 298.955 74.738 224.216
80 мм 2196.603 2869.376 282.204 070.551 211.653
81 мм 2169.485 2833.952 268.471 67.117 201.353
82 мм 2143.027 2799.391 256.972 64.243 192.729
83 мм 2117.208 2765.664 247.178 61.794 185.383
84 мм 2092.003 2732.739 238.719 59.679 179.039
85 мм 2067.391 2700.589 231.329 57.832 173.497
86 мм 2043.352 2669.187 224.810 56.202 168.607
87 мм 2019.865 2638.507 219.010 54.752 164.258
88 мм 1996.912 2608.524 213.813 53.453 160.360
89 мм 1974.475 2579.214 209.126 52.281 156.845
90 мм 1952.536 2550.556 204.876 51.219 153.657
91 мм 1931.080 2522.528 201.002 50.250 150.751
92 мм 1910.090 2495.110 197.456 49.364 148.092
93 мм 1889.551 2468.280 194.196 48.549 145.647
94 мм 1869.449 2442.022 191.188 47.797 143.391
95 мм 1849.771 2416.317 188.405 47.101 141.304
96 мм 1830.502 2391.147 185.821 46.455 139.365
97 мм 1811.631 2366.496 183.415 45.853 137.561
98 мм 1793.145 2342.348 181.169 45.292 135.877
99 мм 1775.033 2318.688 179.068 44.767 134.301

Порядок действий такой:


Можно обойтись и без RF соединителя, но с ним все намного проще — легче выставить излучатель вертикально вверх, подключить кабель, идущий к роутеру (маршрутизатору) или карте Wi-Fi.



Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта