Интерфейс USB (Universal Serial Bus - Универсальный Последовательный Интерфейс) предназначен для подключения периферийных устройств к персональному компьютеру. Позволяет производить обмен информацией с периферийными устройствами на трех скоростях (спецификация USB 2.0 ):
Потоковые пересылки
характеризуются гарантированной безошибочной передачей данных между хостом и функцией посредством обнаружения ошибок при передаче и повторного запроса информации.
Когда хост становится готовым принимать данные от функции, он в фазе передачи пакета-признака посылает функции IN
-пакет. В ответ на это функция в фазе передачи данных передает хосту пакет с данными или, если она не может сделать этого, передает NAK
- или STALL
-пакет. NAK
-пакет сообщает о временной неготовности функции передавать данные, а STALL
-пакет сообщает о необходимости вмешательства хоста. Если хост успешно получил данные, то он в фазе согласования посылает функции ACK
Когда хост становится готовым передавать данные, он посылает функции OUT
-пакет, сопровождаемый пакетом с данными. Если функция успешно получила данные, он отсылает хосту ACK
-пакет, в противном случае отсылается NAK-
или STALL
-пакет.
Управляющие пересылки
содержат не менее двух стадий: Setup-стадия
и статусная стадия
. Между ними может также располагаться стадия передачи данных
. Setup-стадия
используется для выполнения SETUP-транзакции
, в процессе которой пересылается информация в управляющую КТ функции. SETUP-транзакция
содержит SETUP
-пакет,
пакет с данным и пакет согласования. Если пакет с данными получен функцией успешно, то она отсылает хосту ACK
-пакет. В противном случае транзакция завершается.
В стадии передачи данных
управляющие пересылки содержат одну или несколько IN-
или OUT-
транзакций, принцип передачи которых такой же, как и в потоковых пересылках. Все транзакции в стадии передачи данных должны производиться в одном направлении.
В статусной стадии
производится последняя транзакция, которая использует те же принципы, что и в потоковых пересылках. Направление этой транзакции противоположно тому, которое использовалось в стадии передачи данных. Статусная стадия служит для сообщения о результате выполнения SETUP-стадии и стадии передачи данных. Статусная информация всегда передается от функции к хосту. При управляющей записи
(Control Write Transfer
) статусная информация передается в фазе передачи данных статусной стадии транзакции. При управляющем чтении
(Control Read Transfer
) статусная информация возвращается в фазе согласовании статусной стадии транзакции, после того как хост отправит пакет данных нулевой длины в предыдущей фазе передачи данных.
Пересылки с прерыванием
могут содержать IN
- или OUT
-пересылки. При получении IN
-пакета функция может вернуть пакет с данными, NAK
-пакет или STALL
-пакет. Если у функции нет информации, для которой требуется прерывание, то в фазе передачи данных функция возвращает NAK
-пакет. Если работа КТ с прерыванием приостановлена, то функция возвращает STALL
-пакет. При необходимости прерывания функция возвращает необходимую информацию в фазе передачи данных. Если хост успешно получил данные, то он посылает ACK
-пакет. В противном случае согласующий пакет хостом не посылается.
Изохронные транзакции
содержат фазу передачи признака
и фазу передачи данных
, но не имеют фазы согласования
. Хост отсылает IN
- или OUT
-признак, после чего в фазе передачи данных КТ (для IN
-признака) или хост (для OUT
-признака) пересылает данные. Изохронные транзакции не поддерживают фазу согласования и повторные посылки данных в случае возникновения ошибок.
В связи с тем, что в интерфейсе USB реализован сложный протокол обмена информацией, в устройстве сопряжения с интерфейсом USB необходим микропроцессорный блок, обеспечивающий поддержку протокола. Поэтому основным вариантом при разработке устройства сопряжения является применение микроконтроллера, который будет обеспечивать поддержку протокола обмена. В настоящее время все основные производители микроконтроллеров выпускают продукцию, имеющую в своем составе блок USB.
|
USB (Universal Serial Bus - «универсальная последовательная шина») - последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств. Для подключения используется 4-х проводный кабель, при этом два провода используются для приёма и передачи данных, а 2 провода - для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания.
Кабель USB состоит из 4 медных проводников - 2 проводника питания и 2 проводника данных в витой паре, и заземленной оплётки (экрана). Кабели USB имеют физически разные наконечники «к устройству» и «к хосту». Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту». Возможно и неразъёмное встраивание кабеля в устройство (например, USB-клавиатура, Web-камера, USB-мышь) , хотя стандарт запрещает это для устройств full и high speed.
Шина USB
строго ориентирована, т. е. имеет понятие «главное устройство» (хост, он же USB контроллер, обычно встроен в микросхему южного моста на материнской плате) и «периферийные устройства».
Устройства могут получать питание +5 В от шины, но могут и требовать внешний источник питания. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.
USB поддерживает «горячее» подключение и отключение устройств . Это возможно благодаря увеличения длинны проводника заземляющего контакта по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты , потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.
На логическом уровне устройство USB поддерживает транзакции приема и передачи данных. Каждый пакет каждой транзакции содержит в себе номер оконечной точки (endpoint) на устройстве. При подключении устройства драйверы в ядре ОС читают с устройства список оконечных точек и создают управляющие структуры данных для общения с каждой оконечной точкой устройства. Совокупность оконечной точки и структур данных в ядре ОС называется каналом (pipe) .
Оконечные точки , а значит, и каналы, относятся к одному из 4 классов:
Низкоскоростные устройства, такие, как мышь, не могут иметь изохронные и поточные каналы
.
Управляющий канал предназначен для обмена с устройством короткими пакетами «вопрос-ответ». Любое устройство имеет управляющий канал 0, который позволяет программному обеспечению ОС прочитать краткую информацию об устройстве, в том числе коды производителя и модели, используемые для выбора драйвера, и список других оконечных точек.
Канал прерывания позволяет доставлять короткие пакеты и в том, и в другом направлении, без получения на них ответа/подтверждения, но с гарантией времени доставки - пакет будет доставлен не позже, чем через N миллисекунд. Например, используется в устройствах ввода (клавиатуры, мыши или джойстики).
Изохронный канал позволяет доставлять пакеты без гарантии доставки и без ответов/подтверждений, но с гарантированной скоростью доставки в N пакетов на один период шины (1 КГц у low и full speed, 8 КГц у high speed). Используется для передачи аудио- и видеоинформации.
Поточный канал дает гарантию доставки каждого пакета, поддерживает автоматическую приостановку передачи данных по нежеланию устройства (переполнение или опустошение буфера), но не дает гарантий скорости и задержки доставки. Используется, например, в принтерах и сканерах.
Время шины делится на периоды, в начале периода контроллер передает всей шине пакет «начало периода». Далее в течение периода передаются пакеты прерываний, потом изохронные в требуемом количестве, в оставшееся время в периоде передаются управляющие пакеты и в последнюю очередь поточные.
Активной стороной шины всегда является контроллер, передача пакета данных от устройства к контроллеру реализована как короткий вопрос контроллера и длинный, содержащий данные, ответ устройства. Расписание движения пакетов для каждого периода шины создается совместным усилием аппаратуры контроллера и ПО драйвера, для этого многие контроллеры используют Прямой доступ к памяти DMA (Direct Memory Access ) - режим обмена данными между устройствами или же между устройством и основной памятью, без участия Центрального Процессора (ЦП). В результате скорость передачи увеличивается, так как данные не пересылаются в ЦП и обратно.
Размер пакета для оконечной точки есть вшитая в таблицу оконечных точек устройства константа, изменению не подлежит. Он выбирается разработчиком устройства из числа тех, что поддерживаются стандартом USB.
Сигналы USB передаются по двум проводам экранированного 4-хпроводного кабеля.
Тип А | Тип В | ||
Вилка (на кабеле) |
Розетка (на компьютере) |
Вилка (на кабеле) |
Розетка (на периферийном устройстве) |
![]() |
Названия и функциональные назначения выводов USB 1.0 и USB 2.0
Хоть максимальная скорость передачи данных USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), в реальной жизни достичь таких скоростей нереально (~33,5 Мбайт/сек на практике). Это объясняется большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire , хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с (10 Мбайт/с) меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации. В связи с этим разнообразные мобильные накопители уже давно «упираются» в недостаточную практическую пропускную способность USB 2.0.
В конце 2008 года. Как и можно было ожидать, новый стандарт увеличил пропускную способность, хотя прирост не такой значительный, как 40-кратное увеличение скорости при переходе от USB 1.1 на USB 2.0. В любом случае, 10-кратное повышение пропускной способности можно приветствовать. USB 3.0 поддерживает максимальную скорость передачи 5 Гбит/с. Пропускная способность почти в два раза превышает современный стандарт Serial ATA (3 Гбит/с с учётом передачи информации избыточности).
Логотип USB 3.0
Каждый энтузиаст подтвердит, что интерфейс USB 2.0 является основным «узким местом» современных компьютеров и ноутбуков, поскольку его пиковая «чистая» пропускная способность составляет от 30 до 35 Мбайт/с. Но у современных 3,5″жёстких дисков для настольных ПК скорость передачи уже превысила 100 Мбайт/с (появляются и 2,5″ модели для ноутбуков, приближающиеся к данному уровню). Скоростные твёрдотельные накопители успешно превзошли порог 200 Мбайт/с. А 5 Гбит/с (или 5120 Мбит/с) соответствует 640 Мбайт/с.
Мы не думаем, что в обозримом будущем жёсткие диски приблизятся к уровню 600 Мбайт/с, но следующие поколения твёрдотельных накопителей могут превысить это число уже через несколько лет. Увеличение пропускной способности становится всё более важным, поскольку количество информации увеличивается, соответственно, растёт и время её резервирования. Чем быстрее работает хранилище, тем меньше будет время резервирования, тем проще будет сделать «окна» в расписании резервирования.
Таблица сравнения скоростных характеристик USB 1.0 – 3.0
Цифровые видеокамеры сегодня могут записывать и хранить гигабайты видеоданных. Доля HD-видеокамер увеличивается, а им требуются более ёмкие и быстрые хранилища для записи большого количества данных. Если использовать USB 2.0, то на передачу нескольких десятков гигабайт видеоданных на компьютер для монтажа потребуется значительное время. USB Implementers Forum считает, что пропускная способность останется принципиально важной, и USB 3.0 будет достаточно для всех потребительских устройств на протяжении ближайших пяти лет.
Чтобы гарантировать надёжную передачу данных интерфейс USB 3.0 использует кодирование 8/10 бит, знакомое нам, например, по Serial ATA. Один байт (8 бит) передаётся с помощью 10-битного кодирования, что улучшает надёжность передачи в ущерб пропускной способности. Поэтому переход с битов на байты осуществляется с соотношением 10:1 вместо 8:1.
Сравнение пропускной способности USB 1.x – 3.0 и конкурентов
Конечно, основной целью интерфейса USB 3.0 является повышение доступной пропускной способности , однако новый стандарт эффективно оптимизирует энергопотребление . Интерфейс USB 2.0 постоянно опрашивает доступность устройств, на что расходуется энергия. Напротив, у USB 3.0 есть четыре состояния подключения, названные U0-U3. Состояние подключения U0 соответствует активной передаче данных, а U3 погружает устройство в «сон».
Если подключение бездействует, то в состоянии U1 будут отключены возможности приёма и передачи данных. Состояние U2 идёт ещё на шаг дальше, отключая внутренние тактовые импульсы. Соответственно, подключённые устройства могут переходить в состояние U1 сразу же после завершения передачи данных, что, как предполагается, даст ощутимые преимущества по энергопотреблению, если сравнивать с USB 2.0.
Кроме разных состояний энергопотребления стандарт USB 3.0 отличается от USB 2.0 и более высоким поддерживаемым током . Если USB 2.0 предусматривал порог тока 500 мА, то в случае нового стандарта ограничение было сдвинуто до планки 900 мА. Ток при инициации соединения был увеличен с уровня 100 мА у USB 2.0 до 150 мА у USB 3.0. Оба параметра весьма важны для портативных жёстких дисков, которые обычно требуют чуть большие токи. Раньше проблему удавалось решить с помощью дополнительной вилки USB, получая питание от двух портов, но используя только один для передачи данных, пусть даже это нарушало спецификации USB 2.0.
Стандарт USB 3.0 обратно совместим с USB 2.0 , то есть вилки кажутся такими же, как и обычные вилки типа A. Контакты USB 2.0 остались на прежнем месте, но в глубине разъёма теперь располагаются пять новых контактов. Это означает, что вам нужно полностью вставлять вилку USB 3.0 в порт USB 3.0, чтобы удостовериться в режиме работы USB 3.0, для которого требуются дополнительные контакты. Иначе вы получите скорость USB 2.0. USB Implementers Forum рекомендует производителям использовать цветовое кодирование Pantone 300C на внутренней части разъёма.
Ситуация получилась схожей и для USB-вилки типа B, хотя различия визуально более заметны. Вилку USB 3.0 можно определить по пяти дополнительным контактам .
USB 3.0 не использует волоконную оптику , поскольку она слишком дорога для массового рынка. Поэтому перед нами старый добрый медный кабель. Однако теперь у него будет девять, а не четыре провода. Передача данных осуществляется по четырём из пяти дополнительных проводов в дифференциальном режиме (SDP–Shielded Differential Pair). Одна пара проводов отвечает за приём информации, другая – за передачу. Принцип работы похож на Serial ATA, при этом устройства получают полную пропускную способность в обоих направлениях. Пятый провод – «земля».
Иллюстрированная проекция модели сетевого взаимодействия OSI на универсальную последовательную шину.
Не сильно полезный стек USB
Если у читателя бывали сходные ощущения, предлагаю альтернативное, явившееся мне неожиданно ясно в перегретом мозгу видение стека USB, по мотивам любимой 7-уровневой модели OSI. Я ограничился пятью уровнями:
Я не хочу сказать, что весь софт и библиотеки уже сделаны или должны проектироваться, исходя из этой модели. Из инженерных соображений код c уровнями будет сильно перемешан. Но я хочу помочь тем, кто начинает своё знакомство с шиной USB, кто хочет понять протоколы обмена устройств и терминологию предметной области, подобраться поближе к готовым примерам, библиотекам и лучше ориентироваться в них. Эта модель не для загрузки в МК, но в ваши блестящие умы, дорогие друзья. А ваши золотые руки потом всё сами сделают, я не сомневаюсь:)
Итак, поехали, поправляйте, если увидите косяки. Это draft-версия, и если уже такое где-то было нарисовано, прошу простить, я не нашёл и потому скрутил сам. Думаю, картинка никуда не убежит, а я пока объясню почтенной публике, зачем вообще взялся за эту публикацию.
Очередной флэшбэк из девяностых
Свой первый баг из чужого кода я вытряхнул в конце девяностых, будучи студентом на подработках. Это был pppd под FreeBSD, который мы тогда прикрутили на модемный пул. Мотороловские модемы залипали в отбое, дозвониться никто не мог, линия пропадала зазря, и единственный оставшийся способ через PPP keep-alive почему-то глючил. Вот тогда я и выяснил, что pppd зачем-то ждёт шесть ответных байтов LCP вместо положенных четырёх. Почувствовал я себя тогда эдаким лихим жукотрясом из девяностых:-) При чём тут PPP? Просто он на USB похож: пакетный и двухточечный. Правда, в отличие от USB 2.0, полнодуплексный.
Понравилась мне идея HID. Но стоило выйти из Windows за рамки учебных задач мигания светодиодами (вперёд к реальным окружениям UNIX!), как начало сквозить из всех незаделанных щелей , и я почувствовал себя каким-то беспомощным ламером. Отлаживая проект, я инстинктивно схватился за некое подобие tcpdump (так и называется: usbdump(8) , или usbmon), но увидел лишь сообщения на незнакомом языке.
Стало очевидно: не хватает фундаментальных знаний о шине USB. Если модель OSI и стек TCP/IP любой тёртый айтишник осознаёт где-то на уровне спинного мозга просто в силу необходимости, то с USB ситуация другая. Оно и понятно: там можно (нужно) подсмотреть трафик через тот же tcpdump да настроить железо с софтом, а тут полный plug and play, и исправить что-то можно, обновив драйвер или прошивку (или переустановив ОС). Но ведь мы тут с вами собрались как раз за тем, чтобы делать хорошие прошивки, не так ли? Почитав некоторые описания USB в сети, я был удивлён, насколько запутанной может быть документация. У меня даже возникло ощущение, что нас специально хотят сбить с пути истинного, напустив туману и избавившись от конкуренции в зародыше. Я не согласен с таким положением вещей!
Сперва выглядит оптимистично. Наконец-то, стек в разобранном виде. Кадры, правда, обозначены неудачно: я бы нарисовал их вертикальными пунктирными линиями, а EOF - это просто пауза, реально данные не передаются. Но начинаем читать контекст и теряем понимаем истинный замысел автора (запутать нас):
Хост-контроллер интерфейса шины USB формирует кадры ;И вот ещё:
Кадры передаются последовательной передачей бит по методу NRZI.
каждый кадр состоит из наиболее приоритетных посылок , состав которых формирует драйвер хоста;
каждая передача состоит из одной или нескольких транзакций;
каждая транзакция состоит из пакетов ;
каждый пакет состоит из идентификатора пакета, данных (если они есть) и контрольной суммы.
Вот одна из них
По софту всё понятно: это примеры не для промышленного использования, там могут быть баги, некоторые части (типа таблицы ссылок в примере Mass storage) защищены патентом, и вы не имеете прав их использовать в коммерческом проекте. Но это ещё ничего, китайцы ухитряются потом продавать на рынке USB-изделия, у которых даже библиотечные VID и PID не удосужились поменять.
По железу, как я понял, надо начинать с кварца. У меня челябинский PinBoard II с кварцем 12Мгц (все библиотеки заточены под 8МГц), я менял умножитель ФАПЧ с 9 на 6 (ссылка с разъяснениями), иначе МК разгонится до 108МГц вместо 72МГц, а USB на 72МГц вместо положенных 48МГц вообще не поедет. Можно ещё сбавить обороты МК до 48МГц, поменяв делитель шины USB с полутора до единицы. Использовать внутренний генератор МК HSI спецы не любят : частота может слегка уплыть от нагрева, последствия для USB предсказать затрудняюсь. Ну и не забываем о периферии, конечно. Без флэш-памяти SPI/SDIO из примера Mass storage можно сделать разве что аналог /dev/null, но его ведь хрен отформатируешь:-)
Промэлектронщики имеют блестящие знания и навыки по железу, паяют радиодетали толщиной с волос левой рукой с закрытыми глазами (причём потом это работает). Взглянув на электронную схему, почти физически начинают ощущать все её токи с потенциалами, работают также и с силовыми схемами, и с (большими, быстрыми, опасными) промышленными изделиями. Подход к программированию МК соответствующий: он просто должен выдать нужные логические уровни на нужные ножки в нужное время, не столь важно каким способом. Консервативны в технологиях (не влезай - работает), тяжёлую периферию МК не особо жалуют. При обсуждении объектно-ориентированного программирования, информационной безопасности, гигантских проектов в миллион строк кода и всяких навороченных графических интерфейсов скучнеют. Вместо пакетно-ориентированной шины USB предпочитают потоковый режим USART, усиленный либо привычным RS-232, либо более брутальным RS-485 (последовательная шина для промышленных применений, до 10Мбит/с на 15м, до 100кБит/с на 1200м, до 32 устройств).
Айтишники воспитаны на понимании операционных систем, сетевой инфраструктуры и сложных взаимодействий, элита хорошо подкована в информационной безопасности и разбирается во всяких незримых способах проникновения в чужую систему. Некоторые при этом очень любят котиков (ну как их можно не любить? я, правда, не держу, не развожу и не готовлю:-). Многие любят свободу информации, ругать корпорации/правительства и побеждать силы природы усилием мысли. Паталогически ленивы, но обожают новые технологии и закрученные инженерные ребусы с дорогими игрушками (желательно решаемые на уровне софта или, в крайнем случае, перемычек). Отношения с паяльником настороженные: не спрашивайте у айтишника, любит ли он паяльник, может неправильно понять; лучше спросите, любит ли он паять электронные схемы.
К чему я? Мы просто видим этот мир по-разному… Ведь ядро Linux кроили такие же ребята, из модулей на С и ассемблерных вставок для конкретных платформ, и без холиваров вроде обошлись. По-настоящему серьёзный проект я вижу как многоядерную систему, сочетающую современнейшие МК с тяжёлой периферией, но не исключаю связки с классическими моделями типа AVR: ими можно обвесить какие-нибудь критичные быстровращающиеся острия технического прогресса. Если код проверенный годами, то почему нет?
Добавить меткиUSB 3.0 находится на финальных стадиях разработки. Созданием USB 3.0 занимаются компании: Microsoft, Texas Instruments, NXP Semiconductors. В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта будут физически и функционально совместимы с USB 2.0. Кабель USB 2.0 содержит в себе четыре линии - пару для приёма/передачи данных, одну - для питания и ещё одну - для заземления. В дополнение к ним USB 3.0 добавляет пять новых линий (в результате чего кабель стал гораздо толще), однако новые контакты расположены параллельно по отношению к старым на другом контактном ряду. Теперь можно будет с лёгкостью определить принадлежность кабеля к той или иной версии стандарта, просто взглянув на его разъём. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с - что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. USB 3.0 может похвастаться не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Отныне пользователь сможет не только подпитывать от одного хаба гораздо большее количество устройств, но и само аппаратное обеспечение, ранее поставлявшееся с отдельными блоками питания, избавится от них.
Здесь GND - цепь «корпуса» для питания периферийных устройств, VBus - +5 В, так же для цепей питания. Данные передаются по проводам D+ и D− дифференциально (состояния 0 и 1 (в терминологии официальной документации diff0 и diff1 соответственно) определяются по разности потенциалов межу линиями более 0,2 В и при условии, что на одной из линий (D− в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В. Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (Full-Speed или Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1.5 кОм (D− для режима Low-Speed и D+ для режима Full-Speed, устройства, работающие в режиме Hi-Speed, ведут себя на этой стадии как устройства в режиме Full-Speed). Так же иногда вокруг провода присутствует волокнистая обмотка для защиты от физических повреждений. .
Коннектор USB 3.0 тип B
Коннектор USB 3.0 тип А
Хотя пиковая пропускная способность USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), на практике обеспечить пропускную способность, близкую к пиковой, не удаётся. Это объясняется достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации.
Протокол USB storage, представляющий собой метод передачи команд
Кроме того, USB storage не поддерживался в старых ОС (первоначальная Windows 98), и требовал установки драйвера. SBP-2 поддерживался и в них. Также в старых ОС (Windows 2000) протокол USB storage был реализован в урезанном виде, не позволяющем использовать функцию прожига CD/DVD дисков на подключенном по USB дисководе, SBP-2 никогда не имел таких ограничений.
Шина USB строго ориентирована, потому соединение 2 компьютеров или же 2 периферийных устройств требует дополнительного оборудования. Некоторые производители поддерживают соединение принтера и сканера, или же фотоапарата и принтера, но эти реализации сильно завязаны на конкретного производителя и не стандартизированы. Шина 1394/FireWire не подвержена этому недостатку (можно соединить 2 видеокамеры).
Тем не менее, ввиду лицензионной политики Apple, а также намного более высокой сложности оборудования, 1394 менее распространен, материнские платы старых компьютеров не имеют 1394 контроллера. Что касается периферии, то поддержка 1394 обычно не встречается ни в чем, кроме видеокамер и корпусов для внешних жестких дисков и CD/DVD приводов.